jpf-nhandler: Automated Handling
of Native Calls in JPF

Nastaran Shafiei
Fujitsu Laboratories of America, Inc.

DisCoVeri group, York University, Toronto

Outline

- Background

- Motivation

- Atechnique to handle native calls

- More applications of the proposed technique
- Limitations

- Statistics

- Future work

Native Calls

- Native calls: functions that are invoked from Java code and written in
other languages (e.g. C, C++, assembly)

- JVM provides Java Native Interface (JNI) to delegate the execution from
the Java level to the native level

OS
JVM JNI
Invoke m() —=-—-—4-—--== > Execute native m()

D
Native Calls in JPF

- JPF uses Model Java Interface (MJl) to handle native calls

OS
JVM JNI
JPF MJI
Invoke m() —=-—-—g-—=—u- > Execute peer m()
o l
|] | J

model checked executed

Native Peers

- Native peers paly the key role in MJI
- They are executed by the host JVM

- A specific name pattern is used to map a class in JPF to a native peer

JVM

JPF MJI

package gov.nasa.jpf.jvm;

package java.lang;
public class JPF_java_lang_StrictMath

{

a
v

public class StrictMath
{

. . . . public static double sin_D D
public static native double (MJIEnv env, int cref, double d)
sin (double d); 3

s
A

} }

Native Peers

- Native peers paly the key role in MJI
- They are executed by the host JVM

- A specific name pattern is used to map a class in JPF to a native peer

JVM

JPF MJI

package java.lang;

public class StrictMath “ >
{

public static native double -
sin (double d); h

java.lang.UnsatisfiedLinkError

L
Handling Native Calls Is Hard

- Has to be done manually
- Requires knowledge from the internal structure of JPF

public static int NATIVE_PEER_METHOD
(MJIEnv env, int cref, int argl,. . .)

{

ElementInfo ei = env.getElementInfo(cref);
ClassInfo JPFC1l = ei.getClassInfo();

- The native method may not be recognizable
- Behavior of the native method may not be clear

jpf-nhandler

- An extension of JPF that handles native calls automatically

- Creates and maps native peers on-the-fly and on-demand

public class String

public class JPF_java_lang String

public class OTF_JPF_java_lang_String

J

jpf-nhandler/onthefly/

Creating Peers On-the-fly

| begin [

C.m() is
handled?

create OTF
for C

OTF for C
exists?

o]

invoke m()
peer

m() peerin
OTF
exists?

add m() peer
to OTF

Creating Peers On-the-fly

/ begin /

C.m() is
handled?

create OTF
for C

OTF for C
exists?

o]

invoke m()
peer

m() peerin
OTF
exists?

add m() peer
to OTF

Creating Peers On-the-fly

/ begin /

C.m() is
handled?

create OTF
for C

OTF for C
exists?

/end/

Yes invoke m()
peer

m() peerin
OTF
exists?

add m() peer
to OTF

Creating Peers On-the-fly

/ begin / / end /

Yes invoke m()
peer

m() peerin
OTF
exists?

add m() peer
to OTF

C.m() is
handled?

create OTF
for C

Creating Peers On-the-fly

/ begin / / end /

Yes invoke m()
peer

m() peerin
OTF
exists?

add m() peer
to OTF

C.m() is
handled?

create OTF
for C

Creating Peers On-the-fly

/ begin / / end /

Yes invoke m()
peer

Yes

C.m() is
handled?

m() peerin
OTF
exists?

add m() peer
to OTF

create OTF
for C

Creating Peers On-the-fly

/ begin / / end /

Yes invoke m()
peer

Yes

C.m() is
handled?

m() peerin
OTF
exists?

create OTF
for C

No

add m() peer
to OTF

Creating Peers On-the-fly

create OTF
for C

/ begin / / end /

Yes invoke m()
peer

Yes

C.m() is
handled?

m() peerin
OTF
exists?

No

add m() peer
to OTF

Converter

- Converter is a main component of jpf-nhandler
- It converts objects and classes between JPF and the host JVM

Converter

- env: MJIEnv
- clsMap: HashMap<Integer, Class>
- objMap: HashMap<Integer, Object>

JVM > JPE | + getJPFCls(JVMCls: Class): ClassInfo

+ getJPFObj(JVMObj: Object): int
—| + getJVMCls(JPFCls: int): Class

JPF 2> JVM -
+ getJVMObj(JPFObj: int): Object

getJVMCls(int JPFCls)

public Class getJVMCls(int JPFCls)

{
JVMCls < Class object representing JPFCls

Add JVMCls to clsMap

for each static field, f, of JVMCls
if £ is primitive
JVMCls.f < JPFCls.f
else
JVMCls.f <& getJVMObj(JPFCls.f)

return JVMCls

e
getJVMObj(int JPFObj)

public Class getJVMObj(int JPFObj)

{
JVMCls <& getJVMCls(class of JFPObj)

JVMObj € new instance of JVMCls
Add JVMObj to objMap

for each non-static field, f, of JVMCls
if £ is primitive
JVMObj.f & JPFObj.f
else
JVMObj.f < getJVMObj(JPFObj.f)

return JVMObj

Example

Class C {

native C2 m(Cl ol);

Consider jpf-nhandler is running on the following code snippet:

Co=new C();

o.m(ol);

Peer foro.m(o1l)

public static int m_LC1 2 LC2 2 (MJIEnv env, int o, int ol)
{

step 1: Capture objects & Classes in JVM
step 2: Invoke the host JVM method m
step 3: Convert the return value to a JPF object

step 4: Apply changes to the JPF environment

Step 1: Captures Objects & Classes in JVM

- Root items to be converted from JPF to JVM:
Object/Class invoking the native method

Objects sent as an arguments to the native method and their classes

- 0.m(o0l)
- Object caller = converter.getJVMObj(o0);
- Object arg = converter.getJVMObj(ol);

Peer foro.m(o1l)

public static int m_LC1 2 LC2 2 (MJIEnv env, int o, int ol)
{

step 1: Capture objects & Classes in JVM
step 2: Invoke the host JVM method m
step 3: Convert the return value to a JPF object

step 4: Apply changes to the JPF environment

L
Step 2: Invoke the Native Method m

Using reflection to get the Method object & invoke it

- o0.m(ol)
Method method = caller.getClass().getDeclaredMethod(”m”,..);

Object returnValue = method.invoke(caller,Object[]{arg});

Peer foro.m(o1l)

public static int m_LC1 2 LC2 2 (MJIEnv env, int o, int ol)
{

step 1: Capture objects & Classes in JVM
step 2: Invoke the host JVM method m
step 3: Convert the return value to a JPF object

step 4: Apply changes to the JPF environment

Step 3: Convert the Return Value to JPF Object

The primitive types format in JPF is the same as their format in the
host JVM

If the return value is of non-primitive type, it is converted to a JPF
object

- o.m(ol)

int ret = converter.getJPFObj(returnValue);

Peer foro.m(o1l)

public static int m_LC1 2 LC2 2 (MJIEnv env, int o, int ol)
{

step 1: Capture objects & Classes in JVM
step 2: Invoke the host JVM method m
step 3: Convert the return value to a JPF object

step 4: Apply changes to the JPF environment

Step 4: Apply Changes to the JPF Environment

- Visibility of attributes from native methods is similar to the visibility of
attributes from non-native methods

- The native method can access
- Any static attributes

- Non-static attributes declared in

- Object invoking the native method

- Objects sent as arguments to the native method

0.m(0l)
- Updating the JPF objects o & 01 and their classes

Execution Pattern

- To handle a native method, jpf-nhandler delegates the execution from

the JPF level to the native level

OS
JVM JNI
JPF MJI
Invoke m() —=-—-—g-—=—ux > Execute peer m()
l ------------------- > Execute native m()
JR B l
r !

Ways to handle native method

- User can choose between the following two options:

1. Execute the steps within OTF peers
* Requires creating, extending, and loading the classes

* Source code can be obtained and edited by decompiling OTF peer (e.g.

skipping the 4t step for certain methods)

* Is the suggested option for frequently used native calls

2. Execute the steps outside of OTF peers

-« Skips creating, extending, and loading the classes

Handle Within OTF peer

/ begin / / end /

invoke m()
peer

Yes

C.m() is
handled?

m() peerin
OTF
exists?

S
Applications of jpf-nhandler

- It is not specific to native methods

- lower down the execution from JPF to the host JVM for non-native methods

- Applications
- Delegating native methods
- To avoid java.lang.UnsatisfiedLinkError
- Delegating non-native methods
- Increases the performance by reducing the size of the state space

- Simplifies the traces

Configuration

- Specifying the way to handle the methods
- Within OTF peers

- Skip creating OTF peers

- Specifying the methods to be handled
- All unhandled native methods (default)
- Certain native methods
- Certain non-native methods

- Avoiding jpf-nhandler to delegate the execution for certain classes and
methods

- Skipping the execution of certain methods

Limitations

- Correctness issues

- Applying jpf-nhandler on certain system classes affects the system
consistency (e.g. Class, Thread, ThreadGroup)

- State of an object should be identified by the same fields and superclasses in

host VM and JPF classes - guaranteed if the corresponding class hierarchies
don't include modeled classes

- The method execution should rely on caller and arguments & its side effects
should be observable from return value, arguments, and caller

- Performance issues

- Overhead due to irrelevant object conversion

- Multiple instances of a JVM object retrieved from the object pool can be
created in JPF

Limitations

- There should be a one-to-one correspondence between model class
fields and the fields of the class in the Java standard library

Constructor Constructor
regldx: int - clazz: Class<T> clazz
name: String - slot: int
<——:;2——> - parameterTypes: Class[]

- exceptionTypes: Class[]
- modifiers: int
- annotations: byte[]

\ Y
model class standard class

Limitations

- The execution of the method should only depend on the state of the
caller object/class and the method’s arguments

- ReentrantLock.lock() depends on the current thread
JVM

JPF MJI

L = new ReentrantlLock..

thd T1
L.lock()
thd T2

L.lock()

Limitations

- The execution of the method should only depend on the state of the
caller object/class and the method’s arguments

- ReentrantLock.lock() depends on the current thread

JVM
JPF MJI
L = new ReentrantLock..
thd T1
L.lock() —> /
thd T2
L.lock() > /

Limitations

System.arraycopy(Object src, .. Object dest, ..)
src, dest: Object][]

- Handled in jpf-core

- Handled in jpf-nhandler

Limitations

System.arraycopy(Object src, .. Object dest, ..)
src, dest: Object][]

- Handled in jpf-core

- Handled in jpf-nhandler

Limitations

System.arraycopy(Object src, .. Object dest, ..)
src, dest: Object][]

- Handled in jpf-core

- Handled in jpf-nhandler

Limitations

System.arraycopy(Object src, .. Object dest, ..)
src, dest: Object][]

- Handled in jpf-core

- Handled in jpf-nhandler Q ? ’
—_—

Limitations

System.arraycopy(Object src, .. Object dest, ..)
src, dest: Object][]

- Handled in jpf-core

- Handled in jpf-nhandler Q ? ’
- Vb
Y

——

Limitations

System.arraycopy(Object src, .. Object dest, ..)
src, dest: Object][]

- Handled in jpf-core

- Handled in jpf-nhandler Q ? ’
o Vb
Y

—

 E—
——

Statistics

- java.lang.String
- 24 methods of String are mapped to a method in the String peer

- Size of JPF_java_lang String: 318 lines

- Created a class that tests every String method that is mapped to a

method in the peer

- jpf-nhanlder was used to handle String methods
- Made jpf-nhandler to delegate all String methods
- Removed JPF_java lang String

- Only delegated “unhandled native” methods

Statistics

class model class peer class | effort (code size)
Format v v 99
NumberFormat v X 76
DecimalFormat v v 245
DecimalFormatSymbols X v 45

DateFormat X v 75
SimpleDateFormat v v 177
DateFormatSymbols X 4 36

Total effort: 753 lines of code
Note: model classes and peers are API specific

D
Future Work

1. Cache JVM objects used in delegation calls (update during gcEnd()
notification if Elementinfo was marked as changed)

2. Properly execute clinit() methods with JPF for classes added by
JVM->JPF conversion (can be verification relevant code)

3. Implement configuration options (skip, create source stub, create
delegating OTF-peer, based on caller or callee packages/classes/
methods)

4. Extend with per-object peers (via Elementinfo attributes) to solve peer
state problem

5. Benchmark delegation cases

Thanks!

